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INTRODUCTION

Improvements in robust performance of a Turret-Gun System mounted on
helicopters, can significantly enhance the mission capabilities of light attack
helicopters. Designing controllers for a Turret-Gun System, whose

mathematical model is subject to uncertainties is an interesting and challenging
problem. The uncertainties in the model may arise from unmodeled dynamics,

paremeter variations, linearization of nonlinear elements, sensor noises etc. A
control strategy which can guarantee stability and provide satisfactory

performance in the presence of model uncertainties, is called a robust

controller. Among the various design methods for robust controllers, the linear

quadratic Gaussian with loop transfer recovery (LQG/LTR) design procedure
[1] has many advantages. This methodology will result in control systems with

excellent stability robustness, command following, disturbance rejection and

sensor noise suppression properties.

A frequency-shaped linear quadratic regulator (FSLQR) methodology [2]

based on the frequency domain penalties to the state variables and inputs in
the cost functional has received considerable attention in the literature [3-6].

The LQG/LTR and FSLQR design methodologies have been employed

to design robust controllers for a Turret Gun System.

One of the important problems in the control of a Turret-Gun system is to

approximate a high-order, complex mathematical model of the system with a
low-order, simpler model. The resulting reduced order models are useful for

designing and implementing robust controllers for a Turret-Gun System. This
methodology will provide simplicity of implementation and reduction in

hardware requirements.

The Turret-Gun System contains nonlinear elements, such as gear

trains, servo valves, hydraulic motors etc. In this system, the firing

disturbances excite the structural modes. Integrated Systems Inc. (ISI) has
developed a detailed nonlinear model and identified various parameters of the

model [7]. A linear quadratic Gaussian with loop transfer recovery (LQG/LTR)

controller is designed for the gun system using linearized models. We



encountered the convergence/numerical integration problems in the simulation

of this controller along with the non-linear plant. It is also noticed that there is a
large spread of eigenvalues of the linear model [8]. For the convergence of the

control algorithms and their easy implementation, controllers are designed

using reduced order models.

A large number of techniques are available in the literature for deriving
reduced order models. In this report reduced order models for Turret-Gun

Systems are designed using balanced realization [9], Litz's modal technique

[10] and Routh Approximation [11,12] methods. A critical comparison of time

and frequency response characteristics between an original and reduced

order models is made. The choice of a reduced order model is very significant

for the validity of reduced order robust controllers. The linear quadratic

Gaussian with loop transfer recovery methodology is employed to design
reduced order robust controllers. The discarded modes in the original system

representation can be excited by a reduced order controller and may

destabilize the control system. This problem is known as spillover problem and

is eliminated in the proposed design methodology.

11 RESEARCH OBJECTIVES

The research objectives are

(1) Design an LQG/LTR controller for a Turret-Gun System which has good

command following for step, ramp and acceleration inputs.

(2) Design a frequency shaped linear qLadratic regulator (FSLQR) for

minimizing high frequency uncertainties.

(3) Design of LOG/LTR and FSLQR controllers using reduced order models.

(4) Stability and performance in the presence of uncertainties.

(5) Simulation studies incorporating reduced order controller with a

nonlinear plant.
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III DESCRIPTION OF THE TURRET-GUN SYSTEM

The Turret-Gun System consists of a 30 mm chain gun driven by an
electrical motor and is capable of firing 600 rounds per minute. Weapon

pointing commands are generated by an integrated helmet and display sight

system using a fire control computer.

The gun is mounted 'Nithin a cradle using a brass slide mechanism which

allows for recoil movement. Recoil adapters are mounted between the recoiling
mass of the gun and the cradle to absorb some of the recoil force. The cradle

and gun assemblies are attached to a fork using two trunnion pins. One
trunnion pin has a resolver built into it. This resolver provides the elevation

pointing error to the turret control box. The elevation axis positioning is
accomplished through the use of a servo valve controlled, double acting
hydraulic cylinder. The piston has unequal cross-sectional areas to account

for gravitational effects. A delta hydraulic pressure transducer provides rate
feedback information to the turret control box.

The fork assembly is held in place by the Azimuth housing. The housing

holds a rotary hydraulic motor and a gearbox. The housing also holds a train
rate sensor which measures the angular velocity of the Gun/Cradle/Fork unit,

and a resolver for measuring the angular position.The Azimuth housing, fork,
cradle and gun are attached to the vehicle's hull.

IV REDUCED - ORDER MODELING TECHNIQUES

In this Section a brief review of various reduced order modeling

techniques is given.

(A) Balanced Realization Method:

Among the various model reduction techniques, reduced order models

derived using the balancing-truncation [9] technique have many advantages.
This technique is based on controllability and observability (location of

actuators and sensors) considerations of the plant. The subsystem

corresponding to dominant (non-dominant) singular values of the balanced

3



Grammians is termed the strong (weak) subsystem. By approximating the weak
subsystem at w = 0, a reduced order model is derived. Let the state variable

representation of a Turret-Gun System be given by

x = Ax + Bu ...(1)

y =Cx+Du ... (2)

Let xb = Tx ... (3)

whero T is a linear transformation matrix which transforms the system
represantation into balance realization form.

Xb = Abalxb + Bbalu ... (4)

y = Cbal xb + Dbal u ...

The Hankel singular values (Ti) are determined by

ai = j/ (PQ) i = 1, 2, .... n ... (6)

where P and Q are controllability and observability grammians.

The balanced realization Eqns (4 and 5) are partitioned as

X1= A1 1x1i+ A. x2 + Blu ...(7)

x2 = A2 1 x1+ A22 x2 + B2u ...(8)

y = Cl 1x + C2 x2 + Du ...(9

The 'pproximation employed is

X2(s) = -A-'1A 21X1(s)- A-' B2 U(s) ...(10)

and the reduced order model is given by

4



Xr = ArXr+BrU ...(11)

Yr = Crxr + DrU ... (12)

where
Ar =All A A 2 ... (13)

Br =B 1 - 1 2A2
1 B2  ... (14)

Cr=C 1 C 2 A2A 2  ... (15)

Dr=D 1 -C2 A21B 2  ... (16)

The reduced order models possess the following properties [13] which

are very useful in the design of reduced order LQG/LTR controllers.

(i) The reduced order models preserve stability, controllability,
observability and minimality.

(ii) The steady state values of the original system and reduced order model
are identical.

(iii) Error bound of the reduced order model

n

Z[G(j-)-Gr(jW)] < 2 1Ci V CO ... (17)
i=r+l

(iv) Reduced order models have goof frequency response match at low
frequencies.

(B) Routh Approximation Method

The Routh Approximation method proposed by Hutton and Friedland

[11]. is based on the Routh Stability criterion. This reduced order methodology

has the following properties.

(i) The reduced order model is guaranteed stable, if the original system is
stable.

(ii) The sequence of Routh approximants converge monotonically to the
original system in terms of the impulse response energy.

(iii) The method does not require any information about the system
eigenvalues and eigenvectors.

5



Rao, et al [12] have developed a Routh canonical realization in time

domain for single input - single output systems. This procedure eliminates the

reciprocal transformations used in the Hutton and Friedland [11] procedure.

Consider a linear system represented in the phase canonical form

x = Ax + Bu ... (18)

y =Cx ... (19)

where x is an n-vector, u and y are scalar.

The Routh canoncial form is obtained by considering a linear

transformation

z =Px ... (20)

and is given by

2 =Fz+Gu ...(21)

y =Ez ...(22)

where F=PAP -1 , G=PB, E=CP -1  ... (23)

The system matrices F and G can be written as

-Y1 0 -Y3 0 -Y5 .- n
0 0 Y3  0 75 -.. Yn

F=Y1 Y2 -73 0 -Y5 -Yn

-Y1 -72 -Y3 -Y4 -Y5 -Yn

G=[1 0 1 0 1 ... 1]T  for n odd ... (24)

6



0 72 0 74 Yn

-Y1 -Y2 0 -Y4 " Yn
0 0 0 Y4 ... Yn

F=

-Y1 -Y2 -Y3 -Y4 - -Yn

G=[0 1 0 1 ... 1]T for neven (25)

where the values of y, are obtained from a Routh table using the characteristic

equation of the transfer function C(sl-A)-'B.

Let the characteristic equation be

f(s)= sn+ alsn- + a 2sn-2+ ...an 0 ...(26)

Then the Routh table can be constructed as

an  an_ 2  an_4  ... a 2  1

an-1  an_ 3  an_5  ... a, 0
a2 a2 a2
a0  a2  a4
a3  a3  ... (27)

a n

The y are given by

an _an_1  a2  aoj1
Y 1 - 1 ' Y 2 = -a 2 Y2 =  -" 3 ". . n - a

The transformation matrix P can be extracted from the Routh table as

7



an_ 1  0 an_3 0 ... 1
o a2  0 a2  ... 0

P=0 0 a 0 1 for n odd ...(28)

0 0 0 0 ... 1

For an even order n, the last column of P is replaced by

[0 1 0 1 ... 0 1]T

The output matrix E can be evaluated using the relationship

E = CP - 1  ...(29)

A reduced order model is derived by discarding zr+1 .... Zn and is given by

Xr = ArXr + Bru ... (30)

Yr = Crxr ...(31)

where
Ar = DFDT, Br = DG, Cr = EDT

and D = [ir  i0rxn

(C) Litz's Modal Method

The reduced order models derived on the basis of modal techniques
play a very important role in the design of controllers for large scale systems. A
large number of modal techniques are available in the literature [14]. Litz [10]
has developed a reduced order model based on a dominance measure and
permits larger reductions in size for the same accuracy. A brief review of this
method is given below:
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Consider a linear system represented by

x = Ax +Bu ... (32)

Let x = Pz ...(33)

where P is a transformation matrix which transforms the given system into
Jordan canonical form

2 = Az+Gu ...(34)

A dominance measure is introduced by Litz, to determine dominant modes to be
retained, most sensitive state variables and an appropriate order for the
reduced model. Equations (33) and (34) are partitioned as shown below:

[I X] [P" P12][z'] ...(35)

2 P21P22JZ2J

L2 L0 A2j Z2 ILG2 ju. (6

where zl and z2 represent dominant and nondominant states respectively.

To derive a reduced order model, the following approximation is

introduced:

-2 = Ezl ... (37)

From Equations (35,36 and 37)

X1 = (P11 + P12 E)zl = FZ1  ... (38)

z1 = AIZI+ Glu

Let xr = Fz1  ... (39)

where F = (P1l +P12E) is a linear transformation matrix.

9



The reduced order model is given by

r = Arxr +Br U ... (40)

whereAr=FA1F- 1 and Br=FG1  ... (41)

The matrix E is determined optimally through the use of Lagrange multipliers to

minimize a weighted integral of the square of the error between 2 and z2. The

matrix E is given by

E=A21[S + (02- ST1G1)(G T1 1)-G]T1A 1  ... (42)

where

(Sj= - X 2~~ (000).
1'"

( - Xm+iklj(02 0 6 1)

V STATE VARIABLE MODEL OF THE TURRET-GUN SYSTEM

A model of the turret-gun system which relates inputs and outputs is
needed for control design purposes. A detailed nonlinear model of the system

was developed by Integrated Systems Inc. [7]. A separate model for azimuth
and elevation axis were developed as the coupling between them is minimal.
The azimuth axis system (Fig 1) consists of three physically identifiable

sections: (1) servovalue (2) hydraulic motor/gearbox and (3) gun plant. A
block diagram represenations of this is shown in Fig 2. A linear state variable
model of the azimuth axis system is obtained by using system build and

analyzing system features of Matrix x. The state variable model derived at the

nominal operating point (t = 0.04) has 13 eigenvalues values and the damping
factors, natural frequencies of this system are given in Table I. The input and
output variables are azimuth current and train rate respectively. The mode at

-19.385 is not controllable with the selected input, hence a minimal realization
of the system is derived by neglecting this mode. The order of the model is 12

and it is noticed that there is a large spread in the eigenvalues of this model.

10
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TABLE -
Eigenvalues, Damping Ratio and Natural Frequencies of Azimuth Axis System

Eigenvalues Damping Ratio Natural Frequencies

-1.713 x 10-3

-5.375 ±j52.045 0.10273 52.322 (rad/sec)

-20.265 ±j1 37.94 0.14535 139.42 (rad/sec)

-1 9.819 ±j294.8 0.06707 295.47 (rad/sec)

-945.26

-1573.2 ± j4550.7 0.32673 4815.0 (rad/sec)

-122.23 ± j6397.9 0.01910 6399.1 (rad/sec)

13



VI. DERIVATION OF REDUCED ORDER MODELS

A 12th order linear state variable model of the Turret-Gun System is
derived from a nonlinear system by using analyzing systems features of
matrix x. The input and output variables are azimuth current and train rate
respectively. A 7th order reduced model is selected on the basis of
eigenvalues and singular values. The reduced order models are derived by
using balance-truncation, Litz's modal technique and Routh approximation
methods. The eigenvalues of the original system and reduced order models

are given in Table II. The frequency response plots of original and reduced
order models are given in Fig (3). There is an excellent low frequency match
between original and reduced order models. Step response comparisons were
made between original and reduced order models and are given in Fig (4). It is
very hard to see the difference between original and reduced order models.

14
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VII ROBUST CONTROLLERS

In recent years, an increased amount of research has been directed

toward the design of controllers for the systems whose nominal model is subject
to uncertainties. In general the uncertainties in the model arise due to the

following causes:

(1) High frequency dynamics and other characteristics of the plant that are

unknown or not well understood. These unmodelled characteristics of
the plant also include modes that are ignored when using reduced order
models to simplify the controller or the computations involveds in design.

(2) Variations in the plant behavior due to changes in operating conditions.
This type of uncertainty is probably best understood and typically

occurs in aircraft and other applications where the altitude, pressure,
temperature and flight speed all affect the dynamics of the system.

(3) Errors due to inaccurate or incorrectly calibrated sensors and actuators,

and noise introduced by these devices. These uncertainties are
generally modelled using frequency domain techniques and involve a
stochastic process.

The characterization of the model uncertainties play an important role in

the design of LQG/LTR controllers. Hence a brief review of frequency and time
domain uncertainties is given below:

(A) Frequency Domain Uncertainties. In the frequency domain, model

uncertainties are most often represented by a transfer function matrix, which
either multiplies ar adds to the transfer function matrix of the nominal plant
model. These uncertainties may be assumed to occur eithc'r at the input to the
plant, or at the output of the plant. Figure 5 shows block diagrams of various
frequency domain uncertainty representations. Generally the mathematical
model is fairly accurate at low frequencies, so the uncertainties are small. High
frequency behavior of real systems is not understood and many times not

modeled, so that L(s) becomes large for high frequencies.

18



all La(s) I

+

6(s) = G(S) + La(s)

G(s) = G(s)[I +Lm(s)]

Lm (S)

+ G(s)Ls +i+

6(s) = [I + Lm(s)IG(S)

Figure 5. Frequency Domain Representations of Model Uncertainty.
a) Additive Uncertainty. b) Input Multiplicative Uncertainty.
c) Output Multiplicative Uncertainty.
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When discussing the size of a matrix, singular values play an important role.
This concept provides a way to quantify the size of a matrix and is defined by

a(A) = VX(AHA) where

T(A) denotes the singular values of A,
X(M) denotes the eigenvalues of M,
AH is the complex conjugate transpose of A,
U(A) is the maximum singular value of A, and

U(A) is the minimum singular value of A.

It is usually convenient to define a bound on the uncertainties in terms of the
maximum singular values.

la((.o) >;5[La(s)] ... (43)

lm(co) > U[Lm(s)] ... (44)

A typical 1 m(co) plot is shown in figure 6.

lm(W)
40.0000-- CA)~ -

30.0000 -

- 20.0000

L-1 . 00

-10.0000 0 2 -

0I 100 101 10 10

FREQUENCY (RAD/SEC)

Fig 6 Bound on Frequency Domain Multiplicative Uncertainty.
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(B) Time Domain Uncertainties. For time domain analysis a state variable
model is most often used for the nominal plant. Uncertainties are therefore
represented as changes in the matrices of the state variable model. In most

cases, an additive representation is used where an uncertain matrix of
appropriate dimension is added to the associated nominal model matrix. The
linear state variable model is given by

* = Ax + Bu ... (45)

y = Cx + Du ... (46)

where x is the state vector of dimension n, u is the input vector with dimension
m and y is the output vector with dimension p. For our purposes the

uncertainties are assumed to be additive so the general perturbed system is

* =(A + AA)x +(B+ AB)u ... (47)

y = (C + AC)x +(D+ AD)u ... (48)

(C) Robustness

A system is said to be robust, with respect to a given class of

uncertainties, if for any of those variations in the plant, the overall system

behavior remains acceptable. Therefore the designer should be aware of all
the variations that can be expected to occur in the real system and be able to

describe them so as to insure acceptable behavior in the real system for all

conditions. The previous two sections introduced two general methods for
describing plant variations or model uncertainties. The way in which
acceptable behavior is defined yields two types of robustness.

Stability robustness implies that the system remains stable under the
given perturbations, while performance robustness implies that the

performance of the system does not deteriorate below acceptable bounds

under the given class of perturbations.

(D) Properties of a Feedback System

The important properties of a feedback system are given below:
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D Properties of a Feedback System

The important properties of a feedback system are given below:

Consider the feedback system shown in Fig. 7.

Fig. 7. Typical Feedback System

The output of the closed loop system is given by

Y(s) = [I + G(s)K(s)]-IG(s)K(s)[R(s) - a(s)] + [I + G(s)K(s)]-ld(s) ... (49)

1. Command Following. The output y must track the reference input r

so that the transfer function between y and r should be approximately equal to

the identity matrix.

Y(s) = [I+ G(s)K(s)]-'G(s)K(s) R(s) ... (50)

If G(s)K(s) is large, that is if g[G(s)K(s)>>1, then

Y(s) -[G(s)K(s)]-G(s)Kls)R(s) = R(s) ... (51)

therefore y a r which is the desired command following characteristic.

2. Disturbance Reiection, The output y should be rather insensitive

to disturbances d. Consequently the transfer function between Y(s) and D(s)

should be small.
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Y(s) = [I + G(s)K(s)] - 1  D(s) ... (52)

if g[G(s)K(s)>>I1, then Y(s) [G(s)K(s)]-ID(s) which means y is insensitive to
disturbances when G(s)K(s) is large.

3. Sensor Noise Reiection. Likewise the transfer function between
the output y and the sensor noise T should be small so that the noise attributed

to the sensors has minimal effect on the output.

Y(s) = [I + G(s)K(s)]- 1G(s)K(s)T1(s) ... (53)

When G(s)K(s) is small, Y(s) - G(s)K(s)rt(s), so that the noise rejection is

achieved. In this case, small G(s)K(s) is defined as U[G(s)K(s)] << 1.

4. Performance Robustness. If there are variations in the plant then
the control should be such that the effect on the output is minimal. Let the plant
be represented by Gn(s) +AG(s) where Gn represents the nominal plant model
used in design and AG represents uncertainties or variations occuring in the
real plant. Then the output will have a component due to the nominal system
and a component due to the perturbations. This can be represented by

Y+AY=[I+GnK+AGK]-I[GnK+AK][r- q]+[1+GnK+AGK]- 1 d ...(54)

where the dependence on s is not explicitly shown to simplify notation. The

change in the output due to the system perturbations is given by

AY = {[I + GnK + AGK]-I[GnK + AGK]-[I+GnK]-'GnK}(r- T1)

+{[l+GnK+AGK-'-[I+GnK]-'} d ...(55)

To minimize performance changes due to AG(s), AY should be as small as
possible. If G(s)K(s) is large, that is if _.[G(s)K(s)]>>l the transfer function

becomes
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AY E {[Gn K + AGK]-I[Gn K + AGK] - [Gn K]-'Gn K}(r - i)

+[GnK + AGK]- - [Gn K]- 1} d

O(r - I) + ([Gn K + AGKI' - [Gn K]-'} d ...(56)

Therefore AY due to AG(s) is small when _q[G(s)K(s)>>1.

Summarizing the above four properties, the gains G(s)K(s) shculd be
large for command following, disturbance rejection, and performance
robustness, but should be small for sensor noise rejection. This is not as

contradictory as it may sound, since noise is usually a high frequency
phenomenon, while commands, disturbances, and parameter variations are
much slower or even constant and thus occur only at low frequencies.

Therefore for good performance the loop gains should be large at low
frequencies and small at high frequencies. Also for MIMO systems it is

generally beneficial to have d[G(s)K(s)] = (.[G(s)K(s)] so that the performance

is similar in all loops. These properties describe desirable feedback system
characteristics in the frequency domain. However there is another

consideration that puts not just desirable, but necessary constraints on the

system transfer function.

5. Stability Robustness. Consider unstructured multiplicative

uncertainties at the output of the plant 6(s) = [1+ L(s)]G(s), where G(s)

represents the actual plant and G(s) represents the nominal plant model. The

system must remain stable for all possible L(s). Using the multivariable Nyquist

criteria, this requires

a[(1+ GK)-IGK] <1 ...(57)

where 1m(w)>!L(jo) [1]. When [G(s)K(s)]>>l, a[(I+GK)-IGK]-1 so that for

1 m()<l, the loop gains G(s)K(s) can be large. When 1 m(c)>1, G(s)K(s) must

1
become small, and when 1 m(o)>>1, UG(s) < so that U(GK) must
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decrease rapidly. Thus the crossover frequency of 1 m(Ca) limits the bandwidth

of the system by limiting the crossover frequency of U(GK). This restriction is

not just desirable but necessary for stability due to the fact that for some L(s)

where UL(jco)>l m(o) the system will be unstable if d[(I+GK)-'GK] = 1
lm(CO)'

There is some degree of conservatism associated with this due to the

unstructured assumptions inherent in singular value analysis. There may be

some L(s) where L(jco)>1m(co) but the system remains stable even with

+[( +GK)-GK]- 1 . However without specific knowledge of the actual

L(s), U[(I + GK)-IGK] must be less than 1 m(w.) for all o to insure stability.

Then the designer's task is to provide for large loop gains at low

frequencies to yield good performance properties, while insuring that the

crossover frequency and high frequency rolloff characteristics are adequate to

guarantee stability robustness and provide sensor noise rejection. The above

analysis has assumed the loop broken at the output. If uncertainties are

assumed to occur at the input to the plant, all results are similar except that

G(s)K(s) must be replaced by K(s)G(s). For SISO systems these are

equivalent, however for MIMO systems they are not.
Among the various methods available for design for robust controllers,

the linear quadratic Gaussian with Loop transfer recovery (LQG/LTR)
methodology has many advantages. This methodology has been used to

design controllers for turret-gun systems. A brief description of LQG/LTR

method is given below:

(E) LQG/LTR Design Methodoloav

Doyle and Stein [1] have introduced the LQG/LTR controller

methodology and it has become one of the popular controllers for multivariable

systems. The LQG/LTR design methodology seeks to define a compensator so

that the stability robustness and performance specifications are met to the
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extent possible. A well known property of linear quadratic regulators is that
they exhibit the following guaranteed stability margins:

1-< Gain Margin < ...(58)
2
-600 < Phase Margin < 600 ... (59)

However no stability margin guarantees apply when the linear quadratic
regulator and Ka~man filter are combined into a LQG controller system. This is
the motivation behind the loop transfer recovery procedure of the LQG/LTR
methodology.

The LQG/LTR design procedure involves two steps. In the first step a
target feedback loop is selected which meet the performance specifications. In
the second step the tunable parameters of the LQG controller are adjusted so
that the performance of the feedback system approximates the performance of
the target feedback loop. The LQG/LTR design procedure can be classified
into two categories. If the modelling uncertainties is reflected to the output
(input) of the plant, a full state Kalman filter (linear quadratic regulator) is
designed to meet performance specifications and loop transfer recovery is
accomplished with the linear quadratic regulator (Kalman filter). The procedure
for the system where the uncertainties are reflected at the output is given
below:

Full-State Kalman Filter Design

Consider a system represented by

* = Ax(t) + Bu(t) + Fr(t)
y = Cx(t) + qTM ... (60)

The basic result for the Kalman filter is that the Kalman filter loop transfer matrix

TKF(S) = C(sl- A)-'Kf ... (61)

satisfies the following Kalman Equality [15], [16],
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I + Rl 2C(-jol - A)-'Kf R-1/2 ]H[i + R 2 C(jco, - A)-'Kf R1/2]

f .. (2= I +R R 1/ 2 C(-jol- A T)-1Q f( jel - A )-1C TRf- 1/2 ... ( 62 )

where Rf and Qf are the control and the states weighting matrices. We note

that the above equation is the dual of the LQR. Let us assume

Rf =Al ... (63)

and
Qf = rQor'T ... (64)

where Q0 = I for simplicity. Then equation (62) will be written as

[I + TKF( jc)]H[ + TKF(jQo] = I + i[C(jol - AY-r][C(jcol - AFl-] . (65)

The singular value of [I+TKF(jco)] are given by [15]

<I + T[,KF(jO1= ji+ 1i2[C(j l - A) 1F] ... (66)

This expression governs the performance and stability robustness properties of
KF loops [15]. The matrix process noise r and the positive scalar l.i are the

tunable parameters. Therefore, the parameters I and r are chosen to meet

performance, crossover, and robustness properties. It is known that the matrix
F affects the shape of the TFL singular values plots while g. simply raises or

lowers the plots.

a. Performance Properties. Good performance, requires high loop gains

at low frequencies and satisfies the equation

_[TKF(jW)) >> 1 ...(67)

For systems with cF[TKF(jo)] >> 1, the Equation (66) becomes
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i[TKF(jCO)] = - i[C(jol - A)-IF] ...(68)

Thus f and p. are chosen to meet the low frequency performance requirements.

It is important to notice that instead of solving the ARE for the Kalman filter gain
Kf to find TKF(S) of Equation (61), it is easier to have different choices of F and

so Equation (68) can be satisfied. Also, F may be chosen to bring g[TKF(s)] and

d[TKF(S)] closer together, which typically produces a better design.

b. Crossover Properties. From Equation (66), it is obvious that the KF

return difference matrix always exceeds unity, i.e.,

9[1+ TKF(jco)] > 1 VW ...(69)

which implies that

q[I + T -(jwo)] > .C 0o ... (70)

At crossover, it is desirable to bring the minimum and maximum singular values

plots of TKF closer together.

c. Robustness Properties. The relationship, V GK(I + GK) 1j < is

euqivalent to

_[I + (G(jw)K(j))-]-> lm(CO) ...(71)

The objective is to approximate the open-loop transfer matrix G(j(O)K(jO)
with TKF(jco). Hence, Equations (70) and (71) have the same form. Therefore,

KF loops are guaranteed to remain stable for all unstructured uncertainties

1
reflected to the output of the plant which satisfy lm(w) < -. This guarantee will

2
cover the typical low frequency uncertainties, but we have seen that lm(W)

usually grows greater than unity at high frequencies. Thus, it is necessary to
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directly manipulate the high frequency behavior of TKF(jco). this behavior can

be derived from known asymptotic properties of the regulator as the scalar lI

tends to zero [15], [16]. The result needed here is that under minimum phase
assumption on C(sl-A)-1F, the KF gains Kf behave asymptotically as

V -Kf -- W " as i -- 0 ...(72)

where W is an orthogonal, matrix. At high frequencies, j( can be represented

as s = J as lt -- 0 with c constant. Therefore,

TKF,'I') = rTC( jcl - JiiiA)'K

-* as - .
. (73)jc

Crossovers occur at i[TKF(jW) = 1, this means that the maximum crossover

frequency of the loop should be

Wmax <i[CF'] ...(74)

This frequency cannot be much beyond the frequency where the output

multiplicative uncertainties 1 m(w)=1. Therefore, choices of F and . that satisfy

the performance requirement (68) must all satisfy

(c max - (m ... (75)

where (ol is defined as the frequency where lm((o1)=1. Hence, the choices of

F and i to achieve performance objectives via (68) are constrained by the

stability robustness requirement via (74).

Looo Transfer Recovery using LQR. After designing the full-state

Kalman filter loop to have good performance, crossover, and robustness

properties, we need to add a regulator into the system to recover the
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guaranteed stability margins. This recovery procedure requires that the plant

transfer matrix G(s) and the target feedback loop TKF(S) should be square and
the plant G(s) should be minimum phase.

The goal here is to find a procedure to recover guaranteed margins by
selecting proper LQR gains. Banda and Ridgely [15] have presented a
detailed description of the procedure. The important results are discussed in
this section. It is desirable to choose the LQR gains Kc, so that the loop
properties will be the same for the full-state and regulator-based feedback

cases. The feedback gain matrix Kc can be expressed as a function of a scalar
parameter q such that

Kc - WC as q-*oo ... (76)
q

where W is any nonsingular matrix. The LQR gains are given by

Kc(q) = RclBT P(q) ... (77)

where P(q) is the solution of algebraic Riccati equation

ATP(q) + P(q)A - P(q)BR c lBTP(q) + Qc(q) = 0 ... (78)

and Qc(q) is expressed as a function of q. Now we redefine the LQR state
weighting matrices as

Qc = HTH+ q2CTC ... (79)

The term q2CTC can be thought of as additional fictitious state noise injected
into the system through the outputs to the plant. When q = 0 the standard LQR

is obtained. However, as q is made larger the loop properties become closer
and closer to that of the TFL. Since the state weighting matrices become
increasingly different from the original ones, then a tradeoff between loop

recovery and accuracy of the LQR is necessary.
Substituting the weighting Equations (79) into the regulator ARE (78), we

get
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AT P(q) + P(q)A + HT H + q2CTC - 1P(q)BBT P(q) = 0 ... (80)
P

AT P(q)"-Z'---q +_ P (q ) A + -T + CTC - lq2__BBT P(q ... (81)
q2  q2  C p q2  q

By assuming that C(sl-A) -1 B is minimum phase and the system has as many
inputs as many outputs we get,

P(q) - 0 as q-oo ... (82)
q2

As a result when q -4 - we get

q2 P(q) R- R-1RBT P ( q ) TC- - c"c - - >  z  ... 83)

and then

KT(q)Rc Kc(q)q --4 CTC as q -- , ...(84)
qq

If we define W as

W=R Rcl/2 ... (85)

we will get

Kc(q) - WC q -. oo ... (86)

q

This equation is identical to Equation (76). Hence, choosing the regulator
weights as in (79) yields regulator gains, that give same loop properties in the
limiting case as q - -.

Alternatively the recovery procedure can be thought as a way to

approximate the open loop transfer matrix G(s)K(s) by the TFL transfer matrix
TKF(S). As q 2 - oo, we have
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G(s)K(s) = C4DBKc[D - 1 + BKc + KfC]-IKf

--- CcB[(C4BCDKf] = CKf ... (87)

where D = (sI-A) -1. This equation shows explicitly that the recovery inverts the

plant transfer matrix from the right and the cancellation of the transmission zeros

by their inverses. Hence the plant must be minimum phase.

VIII FREQUENCY SHAPED LINEAR QUADRATIC REGULATOR

In order to place an increased cost on the output of a dynamical system

over a specified frequency range, a modification to the standard linear
quadratic regulator cost functional is required. The concept of a frequency-

shaped linear quadratic regulator (FSLQR) was first introduced by Gupta [2]
and has received considerable attention in the literature [3-6]. The frequency

shaped weighting elements on states and inputs in the cost functional can be
treated as compensation networks similar to those used in classical control.

Consider a linear system represented by

i = Ax + Bu ... (88)

with performance index

j rtf fxTAx+uTRu} dt ... (89)2 0 L

To understand the concept of frequency shaping it is necessary to write

Eq (89) in the frequency domain.

J do0 ... (90)2= l_.I X*(jow)QX(j ) + U(jwo)RU(jow)} dow..(0

where * implies complex conjugate. Representation of the cost functional in
frequency domain provides a procedure to the use of frequency shaping ideas
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in the multivariable techniques. The generalized cost functional can be written

as

J= fI[{X*(j))Q(jo)X(jw) +U*(jc))R(jo)U(jwo)} do ... (91)

where Q(jw) and R(jo) are Hermitian matrices at all frequencies. A unique and

stable solution that minimizes the cost functional (91) exists when the following

conditions are met:

(i) The pair {A,B} is controllable.
(ii) The state weighting matrix Q(jo) is symmetric and positive

semidefinite.
(iii) The control input weighting matrix RUo) is symmetric and positive

definite.

The frequency shaped cost functional (92) can also be written as

J 2 2- tX(j(O)Q((02)X(jW)+U (jw)R(W2)U(jw) dw ...(92)

To develop a control design procedure, let

Q(jO) = P.(jcw)Pl(jw) ... (93)

R(jco) = P2(jw)P 2(jw) ...(94)

Define
Xi(jwo) = Pl(jw)X(jwo) ... (95)

UI(jW) = P2(jCO)U(jm) ... (96)

Then the performance index (92) is represented by

J 2 ( o9 .{X;(jow)Xj(w) + u;(x,)ul(im)} dw ... (97)

Equation (95) may be expressed in terms of a differential equation or state
variable form by assuming the number of zeros in Pi(o) does not exceed the

number of poles. Let the state variable representation of (95) be given by
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Xl(s) = PI(S)X(s) ... (98)
Z1 = Alzl+ Blx ... (99)
Xl = C1zl ... (100)

Similarly Eq (96) in terms of the state variable equation can be expressed as

UI(s) = P2(s)U(s) ...(101)

Z2 = A2z2 + B2u ...(102)
Ul=0 2z 2 +D 2u ... (103)

The augmentation of Eqns (88), (99) and (101) yields

1 =  Al 0 Zl + 0 u ...(104)
/'22- 0 A2JL-Z2J -B2

Xe Ae Xe + Beu ... (105)

The time domain version for the frequency shaped cost functional can
be expressed as

j t +uTul} dt ... (106)

Substitution of Eqns (100), (103) in (106) and simplification yields

J f~tf~xT + 2xeTxuu} dt ...(107)J=2~ e ee+Te uT+

where Qe = CTC1 j Re =DTD 2 ; Qxu= ... (108)o CTc CTD2

By using the standard linear quadratic regulator results for system (105), with
performance index (107), we obtain
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u = -Kexe = -Kcx - Klzl - K2 z2  ... (109)

A block diagram representation of closed loop FSLQR system is shown in Fig.

8.

u B x K

u + Z

Fig. 8 Block diagram representation of FSLQR closed Loop System.
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(A) Disturbance Attenuation by FSLQR

The effect of disturbances can be reduced by designing a controller so
that the sensitivity function of the resultant feedback control system is small
over the frequency range where the oower spectrum of disturbance is large.
Imai et. al [3] have developed a procedure for disturbance attenuation by
adjusting the frequency-dependent weighting matrices of the FSLQR method.

Consider a feedback control system shown below:

d(s)

D

Fig 9. Closed Loop System with Disturbances

G(s) = C(sl- A)-IB ...(110)

U(s) = -K(s)x(s) ... (1 11)

The general form of the Kalman equality for the LOR is

[I + KcG(jw)]*Rc[l + KcG(j0o)] = Rc + G*(jo)QcG(j(o) ... (112)

The Kalman equality for FSLQR is given by [17]

[I + K(jw)G(j(o)]*Re[I + K(j(o)G(jw)] z Re + G'(jo)Q(w2)G(j(o) ...(113)

Let Re = pI
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Then the Kalman equality reduces

[I + K(jco)G(j(o)]*[I + K(jco)G(jco)] = I + p[G*(jo)Q()2)G(jc))] ... (114)

The minimum singular value of Eq (114) can be written as

a2[l + K(jwo)G(jo,)] = I + 1 Xmin[Q( (2)]g2[G(jo)] ... (115)
P

To minimize the effect of disturbances, it is desirable to have

a2[l + K(jCo)G(jwO)] = I + 1Xmin[e((02)]g2[G(jco)] > ,(0 2 ) ... (116)P

where p,(w 2) is a low order approximation of the power spectral density.

For a minimum phase system Eq(1 6) is equivalent to

Q((02) = p[G(jco)G*(jw)]-l[1(W2)_ 1] ... (117)

(B) Robustness Enhancement of FSLQR Method

The major deficiency of the LQR methodology is the underlying

assumption that the model is accurate for all frequencies. In most cases,

however, the design model is a low frequency approximation and is not

accurate at high frequencies. Anderson and Mingori [4] have developed a
FSLQR methodology to enhance the robustness of models with high frequency

uncertainty. They showed that stability robustness can be enhanced if a lead
filter is used in the diagonal elements of Row). For simplicity, their development

is described in this section for SIMO (single-input-multi-output) system. The

results can be extended to include the MIMO case.

A SIMO system S is described by

S: *=Ax+bu, y=Cx ...(118)
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where x is an nxl state vector, u is the control input, y is an rxl output vector

and {A, b, C} are of appropriate dimensions. The desired cost functional is of

the form

J = 1 / (27)fo [X*(jco)QcX(jo) + R(o 2)U2(jo)] do ... (119)

where Qc = cTc and

R(jw))- ji +1 P > a > 0 ... (120)
RjwC)+. 1 ,

A stable solution is guaranteed if Qc is positive semidefinite, {A, b} is

stabilizable, and {A, C} is detectable. The state space descriptions of Qc and
R(jo) are:

2 =0 ... (121)

x,=CTCX ...(122)

2= -or-lz2 + P3( - lu ... (123)

U2 = (-1 - C- 1)Z2 + Pa-lu ... (124)

The resulting time domain cost functional is

J = 0 [XlT X, + u2 2) dt ...(125)

In order to make the robustness effect more visible, Anderson and Mingori [4]
redefined the input of Eqns (123 and 124) as u2. Solving for Eqns (123 and

124) for u, yields

22 = -V 1Z2 + U2 ...(126)

U = (p-1 - 2 )Z2 + OVu2 ... (127)

The redefined state equation for the input filter results in the new cost functional
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J= [XT X, + U2] dt ... (128)

Applying the FSLQR procedure results in the following optimal control law

U2 = kcx + k2z 2  ...(129)

Taking the fourier transform of Equation (126), solving for Z2(jo), and then

substituting into the Fourier transform of Equation (129) yields

U2(jW) =. +-+l- kcX(jc) ... (130)J0a + P1- - k 2

Solving the original problem of U(jco) results in the controller transfer function
K(jo):

U(j(O) UAW= XX + 1 k c X(jwo) = K(jco)X(j eo) ... (131)
U jW) 3+ 1 U2 jw) + (1 - jPk 2)

Anderson and Mingori [4] derived low frequency inequalities for the frequency-

shaped design presented here and also for the conventional LOR problem.
These inequalities are:

1+ K(jco)G(jO)I 2> jCOP3 + 1 -2 (FSLQR) ...(132)I1+ + (1- Pk2)1

I1+Kc(jco)G(jWo)12> 1 (LQR) ...(133)

It was proven in Reference [4] that k2 is less than zero, then at low frequencies

the FSLQR system will loose some robustness due to the frequency shaping of
the input when compared to the LQR system. The amount of performance
robustness lost due to frequency-shaping is approximately (1 -13k 2)-2. For high

frequencies, the following approximations exist

I K(jw)G(j o)l- -kc boqp-2 o.- 1  (FSLQR) ... (134)

lKcG(jco)l- bTPb(o- 1  (LQR) ...(135)
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Since k2 is negative, a third inequality applicable for high frequencies can be

defined as follows:

JK(jo)G(jw)j<IKcG(jo)I ... (136)

Inequality (136) states that stability robustness is improved when frequency
shaping of the input is employed in the form of a lead filter. In fact, if a = 0, then

the high frequency slope of K(jow)G(jc) falls at a rate of -40dB/decade.

IX FSLQR WITH OUTPUT FEEDBACK METHODOLOGY

The implementation of the frequency shaped linear quadratic regulator
(FSLQR) requires the availability of states for feedback. This requirement is

met by designing an appropriate state estimator. The use of an estimator
increases the order of the controller. The order of the controller may be even

greater if integrators are included for command following. To alleviate this
problem a FSLQR design methodology using output feedback is presented

below. Levine and Athans [18] and Moerder and Calise [19] have developed
procedures for determination of the optimal constant feedback controllers for

multivariable systems. In the proposed method, the concepts of output
feedback and frequency shaping are incorporated in the design of controllers.

The salient features of the proposed methodology are given below:

(i) Frequency-shaped weighting matrices are considered in the cost

functional.

(ii) The linear quadratic regulator with output feedback design
methodology is employed.

(iii) The proposed methodology may result in lower order controllers

compared to LQG/LTR methodology (Dependent on the

complexity of Q(jCow) and Row)).

A brief review of the linear quadratic regulator with output feedback
procedure is given below:
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Consider a system represented by

x = Ax +Bu ... (137)

y = Cx ... (138)

with C of full rank and the performance index

J= {xTQx +uT Rul dt ...(139)

where Q > 0, R > 0. It is desired to minimize J by applying output feedback of
the form

u = -Ky ... (140)

When this optimal control problem has a solution, the feedback gain matrix is
given by

K = R-1BTSPCT(CPCT)-I ... (141)

Define A*=A-BKC ...(142)

The matrices S and P are the solutions of the following algebraic equations:

A*TS +SA* +Q+CTKTRKC =0 ... (143)

A*P+PA* t +l =0 ...(144)

A numerical algorithm for solving Eqns (161-166) is given [19]. By combining
the standard FSLQR results (Section VIII) with output feedback LQR, we have
obtained an FSLQR with output feedback design methodology and is given
below:

From Eqns (105) and (107), the FSLQR procedure is to minimize

J = lJ'0{xTQxe + uT ReuT + 2xeQxuu} dt ...(145)
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subject to

ie = Aexe+Beu ...(146)

y = Cexe ...(147)

It is desired to minimize J by applying output feedback of the form

u = -Key ... (148)

The optimization solution for

- =0 ...(149)
Ke

is given by

Ke R-1BSe peCT(CepeC) 1  ...(150)

where
Ae = Ae-BeKeCe ...(151)

SeA e +A eTSe+Qe+C T K T ReKeCe =0 ...(152)

A*Pe + PeAeT +1=0 ...(153)
e ee±0

Moerder and Calise [19] proved that the gain algorithm (Eqns 150-153)

converges to a local minimum under the following conditions:

(i) The pair {Ce,Ae} is detectable

(ii) The matrix Re is positive definite

(iii) Full row rank for C.

Mariton and Bertrand [20] have introduced a modification to numerical

algorithm [19] for solving Eqns (150-153), by comparing the cost of the ir '

iteration J(i) with optimal cost J(opt). This comparison is accomplished by

defining an optimality factor
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V(i) = J(i) - J(opt) ... (154)
J(opt)

where J(i) = Tr. [S(i)]

J(opt) = The cost associated with full state feedback

(A) Performance Robustness Design Guidelines

Performance robustness is a measure of how well a control system

tolerates parameter variations, external disturbances, and steady state errors.

To achieve good performance robustness, the singular values of the loop

transfer function K(jco)CG(j0o) must be greater than 1 at low frequencies. Also,

to achieve integral control (i.e. command following), the slope of the singular

value plots must be at least -20dB/decade at low frequencies.

In LQR low frequency design, the following approximation exists

oY[KcG(jo))] - 1 / /-oi[HG(jo)] ... (155)

where Qc = HTH. A similar low frequency approximation exists for the full state

feedback FSLQR. Rewriting the Kalman equality as:

[I + I(jw)G(jco)]*ae[I + k(jow)G(jWo)] = Re + G*(jW)Q(o02)G(jco) ... (156)

where k(jw) is the full state feedback version of K(jo) and if Re = pI, then the

Kalman equality reduces to

[I + k(jeo)G(jo)]*[I + k(jwo)G(jo)] = I + p-lG*(jO)Q(W2)G(jco) ... (157)

The singular values ai of the above equation are:

i2[ + k(jo.)G(jo)] = ai(I + p-l{Q(jw)Gp(jo)}*Q(jw)G(jo)] ... (158)

Since aj[l+k(jw)G(jco)]>>1 at low frequencies, then a good low frequency model

of the loop transfer function is
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ai[l<(j))G(j))]= 1/r- ai[Q(ja))G(jo)] ...(159)

Modifying equation (159) to include the output feedback constraint yields the
low frequency approximation

ai[K(jc)CG(jo))] = 1 / ai[{Q(jco)C + H}G(jo))] ... (160)

where R(ja)) = pl.

(B) Loop Shaping Procedure

The loop shaping procedure for this problem is the same as the LOR low
frequency design outlined by Doyle and Stein [1]. Briefly, the amin and c max
plots of the loop transfer function given in Equation (160) should be as close
together as possible, especially at the crossover. The shape of the plots may
be altered by changing Q(jo) and H. The dc gain of the plot can be adjusted
for proper 0 dB crossing by tuning the scalar p. The maximum crossover
frequency ccmax should be less than the crossover frequency Col of the
uncertainty scalar Lm(co). The uncertainty scalar represents the maximum
multiplicative uncertainty in the plant G(jow). A list of typical frequency shaped
weighting elements for 0(r) and R(s) are given in Tables Ill-IV.
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TABLE III

FREQUENCY-SHAPED WEIGHTING ELEMENTS FOR Q(s)

Qij(s) Application

integrator for command following and
qij elimination of sensor biases
s

1+Ts proportional-integral control
qij- -

Ts "wash-out" filter to eliminate steady-state
qiil+ Ts feedbacks or to approximate the derivative

function for use in PID controllers

i+ls provide cross-coupling phase lead to
qij1+2s decrease gain scheduling points (Ti >T2)

qij(Oa low pass filter to attenuate high frequency
s + (Oa noise

s2 + Oa notch filter to eliminate bending mode
qijs 2 + 2 (OsaS + wa2  feedback
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TABLE IV

FREQUENCY-SHAPED WEIGHTING ELEMENTS FOR R(s)

Rii(s) Application

p(l + s/co)n for models with high frequency uncertainty
(n = 1,2.... )

for models with high frequency uncertainty
p(1 + s /O) (C00 < Wi)

(1 + s /wi)

p(l+ S2 /w0 2 ) eliminate control response at coo

(1 + 2 s / (0 + s 2 / w02)

X DESIGN OF REDUCED ORDER ROBUST CONTROLLERS

In order to minimize the computational and implementation of LQG/LTR
methodology, the reduced order models are used for design of controllers. The

reduced order models derived by using balance-truncation, Litz's modal and

Routh Approximation methods gave identical frequency responses in the range

of 0.01 to 1000 rad/sec. The reduced order model derived by using the
balance-truncation method is used to design reduced order LQG/LTR

controllers.

Let K(s) and Kr(s) represent the transfer functions of LQG/LTR controllers

designed using the original 12th order system and 7th order reduced model
respectively.(Figs. 10 and 11) The singular value plots of the target feedback

loop and open loop transfer functions G(s) K(s) and G(s) Kr(s) are shown in Fig
(12). The eigenvalues of the closed loop systems full and reduced order

controllers are given in Table V. From the eigenvalues of the closed loop

system, it is evident that the spillover problem is not present in this system.
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s tK~s) !pls'!oant G~s ys

Fig 10. Implementation of Full order Controller.

R(s) + u(s) y(s)
Kr(S) plant G(s) (

Fig 11. Implementation of Reduced Order Controller.
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Fig 12. Singular Value Plots
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Table V

Eigenvalue Comparisons of Closed Loop System

12th Order System 12th Order System
1 2th Order Controller 7th Order Controller

-54.056 -7.6669

-13.177 ± j63.377 -3.4081 ± j82.891

-21.011 ±j138.87 -75.8 ± j57.122

-21.487 ± j295,08 -16.448 ± ji 140.42

-945.26 -15.721 ± j173.18

-1573.2 ± j4550.7 -62.465 ± j307.78

-122.23 ± j6397.9 -550.88

-0.9278 -320.9 ± j759.85

-2.999 ± j169.96 -1522.2

-217.35 ± j172.77 -1572.9 ± j4550.6

-2258 ± j4380 -122.24 ± j6397.8

-8098.5

-5984.6 ± j6310.4

-963.16 ± j9854.0

The phase and gain margins of the target feedback loop, closed lop

systems with original and reduced order controllers are given in Table VI.

TABLE VI

G i P.

Target feedback loop 00 69°

Closed loop system with original controller 22 dB 640

Closed loop system with reduced order controller 13 dB 610
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Simulation Results

The parameters of the system matrix are perturbed by 5% and the step
responses for full order design and reduced order design are plotted in Fig

(13). For the same perturbation, the ramp responses were plotted in Fig (14).
Figure (15) contains the step responses with random disturbances at the

output.
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Xl CONCLUSiONS

A procedure for the design of robust controllers for a Turret-Gun system

mounted on helicopters is presented in this research report. The robust control
strategies will guarantees stability and provide satisfactory performance in the
presence of model uncertainties. The linear quadratic Gaussian with loop

transfer recovery (LQG/LTR) and frequency shaped linear quadratic regulator
(FSLQR) with output feedback, design methodologies have been employed to
design robust controllers. A description of these design procedures is included
in the report. The FSLQR with output feedback is a relatively new approach

and is suitable for a turret-gun system.

In order to provide simplicity of implementation and reduction control
hardware requirements, a simpler model for the turret-gun system is
investigated. Reduced order models are derived by using balance-truncation,

Routh approximation and model techniques. The eigenvalues and time
responses of reduced order models are compared with the original system. It is

very hard to see the difference between step responses of original and
reduced order models. There is an excellent low frequency match between
original and reduced order models.

The balanced reduced order models are employed to design LQG/LTR

controllers. The eigenvalues and stability margins of the reduced order design
are compared with the original high order controller. These comparisons and
simulation results indicate that the reduced order design gave satisfactory
results. The spiWover problems are not present in this closed loop system.

The practical implementation of robust controllers on the gun system is

an interesting and challenging job. It is recommended that the robust
controllers be implemented and compare the response of the open loop and
closed loop system for the effects of parameter variations, unmodelled
dynamics, sensor and system noises.
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